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Abstract

This paper and its companion address the problem of theoretically predicting coalescence of cavities in periodically
voided ductile solids. One considers, as in several previous finite element (FE) studies, a cylindrical representative
volume element (RVE) containing an initially spheroidal void and subjected to some axisymmetric loading. We con-
sider here the case where the major stress applied is the axial one so that the strain is mainly vertical. As a consequence,
voids gradually concentrate in horizontal bands. Coalescence corresponds to a sudden concentration of the defor-
mation in these regions. In the model, one considers the RVE as made up of three layers, a highly porous one containing
the void surrounded by two sound ones; the strain rate and stress fields are considered as homogeneous in each region.
A recent model proposed by the authors, analogous to that of Gurson but accounting for void shape, is used to describe
the behavior of the central layer while the outer ones obey von Mises’ criterion. Two regimes are possible according to
whether the sound zones are plastic or rigid; the first one corresponds to the pre-coalescence period while the second one
corresponds to coalescence. The simple model thus obtained is entirely analytic. Comparisons with various FE sim-
ulations are presented for several initial porosities, void shapes and triaxialities, and the predictions of the model are
found to agree quite well with the numerical results. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micromechanical finite element (FE) analyses of void growth and coalescence in periodically voided
ductile solids were initiated by the pioneering work of Koplik and Needleman (1988). As in several sub-
sequent works (among which those of Brocks et al. (1995), Sovik (1996), Pardoen and Delannay (1998)),
the authors considered an initially spherical or spheroidal void embedded in an axisymmetric cylindrical
“cell”. This geometry was in fact an approximation of a cylindrical volume with some hexagonal basis,
which can be considered as an elementary cell in a periodically voided material. Fully three-dimensional
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computations were also performed by Hom and McMeeking (1989), Worswick and Pick (1990), Richelsen
and Tvergaard (1994) and Kuna and Sun (1996).

In most of these works, and especially in all two-dimensional simulations, the elementary cell was
subjected to an axisymmetric loading (2, = 2, # 0, 2.. # 0, other X;; = 0, where z denotes the direction of
the axis of symmetry), with a major axial stress (2., > X,,). In this case, due to axial stretching and radial
contraction, the vertical distance between neighboring voids gradually becomes larger than the horizontal
one, even if these distances were initially equal (as generally assumed). The resulting void distribution
therefore becomes more and more anisotropic. Onset of coalescence corresponds to some instant when the
strain rate suddenly localizes (in a diffuse manner) in the horizontal inter-void ligaments, the other zones of
the material becoming rigid. The presence of these horizontal rigid zones precludes any further horizontal
contraction so that the deformation mode suddenly becomes a uniaxial, vertical stretching. This phe-
nomenon will be termed “coalescence in layers™ in this paper. (A different type of coalescence, “in col-
umns’’, will be considered in Part I1.)

Theoretical modeling of coalescence in layers started with the early, seminal work of Thomason (1985).
Using limit analysis, this author proposed an approximate formula for the “critical’” axial stress inducing
some plastic flow localized in the horizontal ligament between neighboring voids. This provided a criterion
for coalescence of voids, which could indeed be considered to occur when the actual value of the axial stress
reached its “critical” value. Another approach was proposed by Perrin (1992). He accounted for the strain-
induced anisotropy of the void distribution by schematizing the axisymmetric cylindrical cell considered as
made up of three horizontal layers, a highly porous central one (containing the void) surrounded by two
sound ones, the strain rate and stresses being homogeneous in each zone. Gurson (1977) famous model for
porous plastic solids containing spherical voids was used to describe the behavior of the porous zone, and
coalescence was considered to occur when Rudnicki and Rice’s (1975) well-known criterion for strain lo-
calization, as applied to Gurson’s model by Yamamoto (1978), was met in this zone. Very recently, Pardoen
and Hutchinson (2000) combined extension of Gologanu et al. (1997) of Gurson’s model incorporating
void shape effects with Thomason’s (1985) approach to model coalescence even under relatively low (<1)
triaxialities, for which such shape effects become important. Essentially the same approach was even more
recently followed by Benzerga (2000), the main difference being a somewhat different treatment of the
overall behavior after the onset of coalescence.

All of these models provided acceptable predictions concerning coalescence in periodically voided solids,
as evidenced by comparisons with results of FE micromechanical simulations. It is the purpose of this
paper, however, to show that they can nevertheless be further improved. The improvements will be
threefold. First, and most importantly, the agreement between the model predictions and the numerical
results will be better, at least for low ' triaxialities. Second, from a conceptual viewpoint, the model will be
more “economical’ in the sense that the pre-coalescence and coalescence periods will be treated in a simple,
unified way, without appealing to any special “‘coalescence criterion” such as Rudnicki and Rice’s (1975)
localization condition in Perrin’s (1992) work and Thomason’s (1985) criterion in those of Pardoen and
Hutchinson (2000) and Benzerga (2000). Finally, the model developed will be more versatile in that it will
more easily be extended to the case of coalescence “in columns”, as will be shown in Part II, and to co-
alescence in porous viscoplastic materials, as will be expounded in a future paper.

The model to be developed is inspired from that of Perrin (1992) in that we shall retain one of its es-
sential features, namely the schematization of the axisymmetric cylindrical cell as a “sandwich” made up of
three layers (sound, highly porous, sound) in which the strain rate and stress fields are considered as ho-
mogeneous. However, there will be several differences. The first one will be that just as in the recent works
of Pardoen and Hutchinson (2000) and Benzerga (2000), in order to account for void shape effects, we shall

! But not too low, otherwise coalescence does not occur.
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use extension of Gologanu et al. (1997) of Gurson (1977) original model rather than that model itself. The
second difference is more subtle and connected to a remark made by Suquet (private communication, 1992)
about Perrin’s (1992) work, but which in fact applies to all previous coalescence models. Suquet indeed noted
that since Perrin (1992) described the overall behavior of the unit cell, prior to coalescence, through ap-
plication of Gurson (1977) model to the entire cell, not the central, highly porous layer, he did not account
for the strain-induced anisotropy of the void distribution prior to coalescence. In contrast, we shall consider
the cell as made up of three layers (applying extension of Gologanu et al. (1997) Gurson (1977) model to the
central one) right from the beginning of the loading, thus accounting for this anisotropy already before the
onset of coalescence. It will be seen that this is the key to improving the model predictions at low triaxialities.
A third difference with respect to Perrin’s (1992) approach will be that we shall abandon Rudnicki and Rice’s
(1975) theory of strain localization to predict onset of coalescence. Instead, coalescence will emerge in a
natural way from the model, as corresponding to a transition from a phase where the three layers are all
plastic, to another phase where the sound ones become rigid. Finally, unlike in Perrin’s (1992) work, no
additional element * will be introduced to describe the coalescence phase, which will simply correspond, as
just stated, to the period when the sound layers are no longer plastic but rigid.

The paper is organized as follows. We first recall in Section 2 the elements of Gologanu et al. (1997) model
for porous ductile solids containing spheroidal voids, considering only axisymmetric loadings aligned with
the axis of the voids for the sake of simplicity (which is sufficient for the present purposes). Next, in Section 3,
we expound the equations of our model of coalescence in layers, distinguishing between the pre-coalescence
and coalescence phases. Section 4 is finally devoted to comparisons with the results of micromechanical
simulations, either taken from the literature (Koplik and Needleman, 1988; Sovik, 1996) or new.

2. The GLD model for porous ductile solids containing spheroidal voids
2.1. Generalities

We begin by recalling the elements of the model proposed by Gologanu et al. (1997) and Gologanu et al.
(1997) (hereafter referred to as the Gologanu-Leblond-Devaux (GLD) model) in order to introduce void
shape effects in a Gurson-like description of porous plastic materials. The sound (void-free) matrix will be
assumed to be (rigid) ideal plastic, with yield stress gy in uniaxial tension. Indeed, since various authors have
shown that strain hardening has only a weak influence upon coalescence, we shall disregard it in the present
paper. Also, we shall give the equations of the GLD model only for axisymmetric loadings aligned with the
axis z of the voids (2, = Z,, # 0, 2. # 0, other X;; = 0), since coalescence will be considered only for such
loadings.

The GLD model is based on the consideration of some RVE of spheroidal shape containing a confocal
spheroidal void (Fig. 1). The void and the RVE can be either prolate (Fig. 1a) or oblate (Fig. 1b). These two
cases will be referred to through the symbols (P) and (O), respectively, in the equations to follow. The semi-
axis of the void along the vertical direction is denoted a;, and that along the horizontal ones, b;. The semi-
axes of the RVE are similarly denoted a, and b,. Because of confocality, these semi-axes are related by the
relation +/|a} — b3| = /|a} — b3| = ¢ where ¢ denotes the focal distance. Such a geometry can be charac-
terized, up to some unimportant homothetical transformation, by two dimensionless parameters, the po-
rosity f and the shape parameter S of the void, defined by

albf a
=— S=/n—. 1
aZbg’ nbl ( )

2 Except for a slightly modified evolution equation for the void shape parameter.
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Fig. 1. The RVE considered in the GLD model: (a) prolate void, and (b) oblate void.

With this definition, S varies from 0 to +oo for prolate voids and from 0 to —oco for oblate ones. Use will
also be made of the inner and outer eccentricities e; = ¢/a; (P) or ¢/b; (0), e; = c¢/a, (P) or ¢/b, (0). It is
easy to check that these quantities are connected to the parameters f and S by the following formulae:
1-e2 1-é?
f_z = 31 (P)7

3
e e

2 ;
A L I - SV ®)
6’2 ei

2.2. Yield criterion

The GLD criterion is of the form, for axisymmetric loadings:

C z
?(Zzz - Zxx + 7”2}1)2 + 2q(g+ 1)(g +f) COSh (KJZ) - (g+ 1)2 — qZ(g +f)2 = O7 (3)
0
Zh = 20(22,“ + (1 — 20(2)222. (4)
In these expressions the parameters g (the “second porosity”), k and «, are given by
0 (P),
g§=1{_9_ (5)
2= ),
1 1 . | g 3+E424/3+e \/§+,/3+e4)
L4 L ((V3-2)mna—-Lm=—™ L4 /n L) (P),
S ((2 A A VA ©)
Her—g)+3e) " —g ) E-¢/ " =¢)") _ _
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Also, the quantities # and C are given by
Ox(g+1)(g+f)sh

_ , 8
T T e P (@S (g 1)(g + /) (kHsh - 2ch) )
_ k(g+1)(g+f)sh
€= (Q+nH)y ®)
where
sh =sinh(kH), ch=cosh(xkH), H=2wu —0), O=1-f, (10)

the parameter ¢ being itself given by

L — l;j arg tanh e; (P),
1 1 (11)
lie% + m

2 27 are sin ¢; (O).

o =

Finally, ¢ is the analog of the heuristic parameter ¢; introduced by Tvergaard’s (1981) in Gurson (1977)
criterion (for spherical voids), which is considered to depend upon the void shape according to the formula
S
1 +e* "’

where ¢, denotes the value of ¢ for spherical cavities (S = 0).

qg=1+2(q—1) (12)

2.3. Flow rule

It has been shown by Gurson (1977) that for metallic materials, which obey the normality property on a
microscopic scale, such a property is also satisfied at the macroscopic scale of “homogenized” models. It
follows that the flow rule is given by

D, = H[UQ(ZWZ — 1)(Z2 = Za +0Z3) + 2mq(g + 1)(g + f) £ sinh (K&)},

2
s 90

(13)
D.. = ZH[%(l 11 = 20)) (2= — 2w +12Z)) + (1 = 2m)q(g + 1) (g + f) 7; sinh (Kz—ﬂ

where H ( = 0) denotes the plastic multiplier. Note that a factor of 2 is apparently missing in the first term
of Eq. (13) for D,,. The explanation is that one must write X, as (Z,, + Z,,)/2 and consider X, and Z,, as
distinct when evaluating the derivative of the yield function (given by Eq. (3)) with respect to X,..

2.4. Evolution equations for the porosity and the void shape parameter

The evolution equation for f is the usual one, deduced from incompressibility of the sound matrix:

f=({1-/trD. (14)
The evolution equation for S reads
1 —3uy
A

The parameter 4 in this equation is of semi-heuristic origin; it is given by

S = h(D.. — D) +< + 30, — 1>trD. (15)

!

T S S ']
h_1+2hT(1 \/,7)1_30(1. (16)
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The expression of the parameter o] in Eq. (16), which was first encountered in the work of Garajeu (1995),
is as follows:

BN ENG)
% =9 1-2 (17)

Also, the heuristic parameter 47, which depends upon the triaxiality

_ %(2Zw + Z‘zz)

T=3im T 2a) 1
|Zzz - Z)oc| ’ ( 8)
is given by
he — 1-17? if (2,—2)tr >0, (19)
P71 =1%2 i (2. - Z)tr E<0.

Note that the expression of /47 is somewhat different from that proposed by Gologanu et al. (1997). The
origin of the difference is discussed in detail in Gologanu’s (1997) thesis and briefly recalled in Appendix A.

3. Model for coalescence in layers
3.1. Generalities

We consider, just as in most numerical studies, a cylindrical RVE containing an initially spherical or
spheroidal void. The shape of the void is considered to remain spheroidal during the whole mechanical
history. (In fact, this becomes wrong during coalescence, but the modified evolution equation for S given
below is precisely designed to account for this.) The dimensions of the void are denoted a and b, and those
of the cylinder, 4 and B (Fig. 2a). The RVE is subjected to some “macroscopic’” axisymmetric (2, = X),)
tensile (tr X > 0) loading, the upper and lower surfaces remaining planar and the lateral one cylindrical.
The major principal stress is assumed to be the axial one: 2., > X,.. The triaxiality 7 (defined by Eq. (18)) is
assumed to be fixed during the whole mechanical history.

As explained in Section 1, for such a loading, coalescence will occur ““in layers”: due to axial stretching
and lateral contraction, the vertical void spacing will increase and the horizontal one decrease, resulting in a

ZA
', @ b
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Fig. 2. The RVE considered in the model for coalescence in layers: (a) real RVE, and (b) model composite structure.
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strain-induced anisotropy of the void distribution; onset of coalescence will occur when the strain rate
suddenly concentrates in the horizontal ligaments separating voids, the remaining parts of the material
becoming then rigid. Following Perrin’s (1992) idea, we account for this strain-induced anisotropy of the
void distribution by schematizing the RVE as made up of three horizontal layers (Fig. 2b). The central one,
of thickness 2D, is highly porous, while the surrounding ones, of thickness 4—D, are fully sound. The stress
and strain rate fields are considered as homogeneous in each zone. The GLD model, accounting for void
shape effects, is employed to describe the behavior of the central layer, while the surrounding ones are
assumed to obey von Mises’ criterion and the associated flow rule.

The schematization adopted immediately raises the problem of the choice of the thickness 2D of the
central zone. Ours is based on the consideration that since the behavior of this portion of cylinder is to be
described by the GLD model, it should be geometrically as close as possible to the RVE used for the
derivation of that model, namely a spheroid confocal with the void. This leads to the “confocality con-
dition”

D'-B=a—-b = D=+\B+a - (20)

Note that for a spherical cavity (a = b), second term of formula (20) reduces to D = B, which was the
choice proposed by Perrin (1992) from a somewhat different argument.

Second term of formula (20) for D was very recently criticized by Benzerga (2000) on the following
grounds. Since the sound layers are to become rigid during the coalescence phase, they should correspond
to those rigid zones effectively observed in FE simulations. Now it is found in such simulations that these
zones extend down to, or up to, the poles of the void. This favors the choice D = a, rather than

B2+ a2 — b2

Benzerga’s argument is indeed compelling for the coalescence phase. However, our choice for D is more
logical prior to coalescence, for the reason expounded above. Also, it has been shown by Gologanu et al.
(1997) that the two possible definitions for D in fact lead in practice to rather similar values. Finally, it will
be shown below that our choice allows for quite satisfactory predictions of the onset and development of
coalescence.

We denote by p the volume proportion of the central porous layer within the RVE and by
f® = 2ab?/(3DB?) the porosity in that layer; thus

o =L (21)

where /= 2ab*/(34B*) denotes the porosity in the whole RVE. More generally, we shall use an upper index
(p) to denote quantities defined in the central porous layer and an index (s) for those defined in the sound
ones (for instance X'P), X D) DO)) whenever necessary. However, we shall drop these indices when
superfluous, that is for quantities defined only either in the porous layer or the sound ones (such as the
shape parameter S or the “second porosity” g for instance, which “exist” only in the porous zone), or for
those quantities which are identical in the different zones. For instance, because of axial equilibrium, the
vertical stress is the same in all layers: Z® = X = ¥_. Also, since the lateral surface is ascribed to remain

cylindrical, the horizontal strain rate is uniform too: D® = D = D,,.
3.2. Pre-coalescence phase

This phase corresponds to plastic flow of the entire RVE. Therefore the stresses Z)(;), 2. in the sound
layers obey the von Mises criterion:

3.-¥=0gy = 2V =3, -0 (22)

XX
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(it is assumed here that ng, just like 2, is smaller than X..). Furthermore the overall stress 2, is obviously
related to the stresses P, X in the porous and sound layers by the relation

xx xx

XX XX

S0 =pED +(1=p)Z = 20 = 1[5~ (1= p)2¥] = L[£0 = (1 = P)(Ex — o) (23)
p p
(where Eq. (22) has been used). Finally, the overall stresses 2., 2., are related by Eq. (18) with 2, > X, so
that (by Eq. (23))

s 3Tl
T3 42

1[/3T -1
> P = -1 .4+ (1— . 24
Thus all stress components can be calculated in terms of the sole unknown X_.. This unknown can finally be
deduced from the fact that the GLD criterion (Egs. (3) and (4)) is met in the porous layer:

C

2
?(Z_,Z — Zi? + 112;,)2 +2q(g+1)(g +f(p))cosh (KO_—,> —(g+ 1)2 —q*(g —i—f@)2 =0,
0 0

2, = 20(22]((5) +(1=20)2...

(25)

In these expressions, the values of the parameters g, k, a,, 1, C, g are given by the formulae of Section 2
(Egs. (2) and (5)—(12)), except for the sole replacement of the “overall” porosity f by that, /®, of the
porous layer.

Once the stresses are known, the components D,,, Dﬁf) of the strain rate in the porous layer can be
deduced, up to some arbitrary positive multiplicative constant, from the flow rule (13) with the appropriate
replacements:

C . )
Dy = H | = (25 — 1)(Z. — 20 4 1%,) + 2mg(g + 1)(g + /) = sinh (=) |,
a4 0o 0o

C . 2
DY) =2H [2 (14 (1 = 200))(Z.. = Z® 4 5,) + (1 - 22)g(g + 1)(g + fP) — sinh (K}>:| . (26
0y - () (o}
Furthermore, the component D of the strain rate in the sound layers is easily deduced from D,, using
incompressibility of these layers:

DY = —2D,,. (27)

zz

Finally the component D., of the overall strain rate is obtained from the relation

D.. :pD£§> + (1 _p)D(S)' (28)

zz

The global strain rate D being known, the rate of the overall porosity f is given by the (unmodified)
evolution equation (14) (which is recalled to be rigorous since it only results from incompressibility of the
sound matrix). The strain rate D® in the porous layer being also known, the evolution of the void shape
parameter is deduced from Eq. (15), with the appropriate replacements:

1-— 30(1
f(p)

The parameter /4 in this equation is given by formulae (16), (17) and first term of Eq. (19), f being replaced
by f® and the overall triaxiality 7 = }(22,, + 2..)/(2.. — Zy) by that, 7® =1220) 4+ 5 /(2. — 2P}, in
the porous layer.

The above formulae allow for the step-by-step calculation of all quantities of interest (stresses, porosity,
shape parameter of the void) as functions of some “control parameter”. Any such parameter may be
chosen; in practice we shall use, like other authors, the overall equivalent cumulated strain E., defined by

+ 30, — 1)trD®, (29)

§= (DY — D) + (
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Ba= [ @D':D’)l/zwdr [ 30~ (30)

where D’ denotes the deviator of D.
The pre-coalescence phase stops when D, (given by the first term of Eq. (26)) becomes zero.

3.3. Coalescence phase

During the coalescence phase, the porous layer is still plastic; hence Eq. (25) still hold. However, the
sound layers now become rigid, so that Zi? can no longer be expressed in terms of X, as in second term of
Eq. (24), which was a consequence of the von Mises criterion’s being met in these layers. However, precisely
because of the rigidity of the sound zones, the strain rate D,, is now zero. Hence the flow rule (26) in the
porous layer implies that

C K . Zh
€ (s — 1)(5e — 50 1 1Z,) + 2onglg + 1)(g + /) sinh () —o. (31)
a5 a0 ()]
Expressing .. — Zg) + 52, in terms of sinh(xX),/ag,) using this equation and inserting the result into first
term of Eq. (25), one gets the following algebraic second-degree equation on the unknown cosh(xZX,/ay):

44242 1)? /’<p) 22
% [cosh2 (Ki—;’) - 1} +2q(g+1)(g + f®) cosh (Kf—;’) —(g+ 1Y =g+ =0.
(32)

One must of course select the solution of this equation which is greater than unity. Assuming X, to be
positive like %(tr Y), one deduces its value from there. Thus, by second term of Eq. (25), Zocng)Jr
(1 =20)2,, is known, and so is also X, — z§§> by Eq. (31); the values of 2;? and 2. follow.

With regard to the strain rate, D,, and DY are zero since the sound layers are rigid; furthermore D{P) and
D.. are connected through formula (28) (with DY) = 0). Thus the various strain rate components are de-
termined up to some arbitrary positive constant.

Once the strain rate is known, the porosity rate can again be deduced from Eq. (14). The rate of the void
shape parameter is then given by the following equation:

S= [y(h—&—%—i—%cz— 1)+
This slightly modified (with respect to Eq. (29)) formula was proposed by Gologanu et al. (1997) in order to
account for the quick evolution of the void toward more oblate shapes during coalescence (due to the
lateral shrinkage of the inter-void ligament); it is of semi-heuristic origin, the value of the parameter y being
deduced from numerical simulations.

(y - 2)]D

zz )

1
T y=2/3. (33)

4. Comparison with some finite element micromechanical simulations
4.1. Koplik and Needleman’s simulations (completed)

FE micromechanical simulations of void growth and coalescence have been performed by Koplik and
Needleman (1988) for some cylindrical RVE with equal initial diameter and height, initially spherical voids,
two values of the initial porosity (fo = 0.0104 and 0.0013, but only the first one will be considered here),
and a sound matrix obeying an ideal-plastic behavior (as envisaged here). The loadings considered were
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axisymmetric with predominant axial stress and the overall triaxiality was kept constant during the whole
mechanical history. Since only medium and high triaxialities of 1, 2 and 3 were considered, we have
completed these simulations by considering two lower triaxialities of 1/3 and 2/3. The computations were
performed using the SYSTUS FE code developed by SYSTUS International. We shall now compare the
results of these full numerical simulations with the predictions of the simplified, analytic model defined in
the previous section. The theoretical value of 4/e ~ 1.47 derived by Perrin and Leblond (1990) for
Tvergaard’s (1981) parameter g, (for spherical cavities) will be adopted in the model predictions.

Fig. 3a—c exhibit the comparison for the normalized stress X.q/g, (where 2., denotes the equivalent
overall stress), the porosity and the void shape parameter. It can be seen on Fig. 3a that the model correctly
reproduces the abrupt decrease of the stress during coalescence for triaxialities of 2/3, 1, 2 and 3. It also
predicts absence of coalescence for a triaxiality of 1/3, just as the numerical simulation. Fig. 3b exhibits a
remarkable agreement for the evolution of the porosity, including its rapid increase during coalescence for
triaxialities of 2/3, 1, 2 and 3. Also, the model correctly predicts the stabilization of the porosity for a
triaxiality of 1/3. This stabilization is obviously responsible for the absence of coalescence in that case. Its
explanation is that for such a low triaxiality, which corresponds to some simple tension loading
(2. > X,, = 0), the initially spherical void quickly becomes quite prolate, so that its growth is no longer

0.5

0.0f

050N . :
00 02 04 06 08 Eeq 12

Fig. 3. Comparison of Koplik and Needleman’s numerical results and ours (—) with model predictions (- - -): (a) normalized stress, (b)
porosity, and (c) void shape parameter.
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governed by the mean stress which is positive, but by the horizontal one which is zero; hence the void
growth rate decreases. Finally, the evolution of the void shape parameter (Fig. 3c) is also correctly pre-
dicted by the model, including the evolution of the void toward oblate shapes even before coalescence for a
triaxiality of 2. However, there is no great wonder here, since the evolution equations (29) and (33) for S
prior and during coalescence were at least partially adjusted to match the numerical results.

Let us now show that two essential features of the model do lead to enhanced predictions. The first one is
that the model accounts for the strain-induced anisotropy of the void distribution (through the consider-
ation of three zones, sound, porous, sound) even before coalescence. The second one is that the model also
accounts for void shape effects. It is easy to suppress the first feature of the model by simply ascribing, prior
to coalescence, the value 4 (semi-height of the RVE) to the semi-height D of the porous zone; this zone
indeed fills the entire RVE then, so that there are no longer three zones but a single one. The model thus
obtained is quite, though not completely, similar to those of Pardoen and Hutchinson (2000) and Benzerga
(2000). Fig. 4a—c, analogous to Fig. 3a—c, display the comparison between numerical results and predictions
of the simplified model defined in that way. Comparison with Fig. 3a—c show that the improvement brought
by the full model with respect to the simplified one is marginal for triaxialities of 1, 2 and 3. It is also
unimportant for a triaxiality of 1/3, for which no coalescence occurs. However, it is important for a
triaxiality of 2/3; indeed the simplified model predicts a notably overestimated ductility for that triaxiality,
unlike the full one.

On the other hand, void shape effects can be disregarded by using Gurson’s original model, instead of the
GLD model, to describe the behavior of the central porous layer. In that case, we choose for D the value B
(the radius of the RVE), in agreement with second term of Eq. (21) with a = b (spherical cavity), and with
Perrin’s (1992) proposal. Fig. 5, analogous to Fig. 3a, shows the comparison, for the sole normalized stress,
between numerical results and predictions of this new simplified model. The model now errs by underes-
timating the ductility for a triaxiality of 2/3, and even more by predicting occurrence of coalescence for a
triaxiality of 1/3, in contradiction with the numerical simulation. The explanation of this erroneous pre-
diction of occurrence of coalescence is that the simplified model disregarding void shape effects simply
relates void growth to the mean stress (which is positive), whereas because of the prolate shapes resulting
from the loading considered, it is in fact essentially governed by the lateral stress (which is zero); thus the
simplified model overestimates void growth.

4.2. Sovik’s simulations

Among the FE micromechanical simulations which have been performed by various authors, those of
Sovik (1996) are of special interest because this author specifically studied the influence of initial void shape.
Indeed he considered initial values of the ratio a/b (= %) of 1/3, 1/2 (oblate voids), 1 (spherical void), 2
and 3 (prolate voids). On the other hand, he took equal values for the initial height and diameter of the
RVE. The value of the initial porosity was smaller than in the work of Koplik and Needleman (1988),
namely fo = 0.0002. A triaxiality of 1 was considered.

A higher value for Tvergaard’s parameter g, than before, namely 1.6, was used in the model predictions,
because of the very low value of the initial porosity. Indeed this value is compatible with accurate numerical
studies of growth of a single void in an infinite matrix (zero porosity) performed by Huang (1991); see also
the work of Gologanu et al. (1997). Fig. 6a and b show the comparison between Sovik’s FE results and the
model predictions, for the normalized stress and the porosity. The model can be observed to yield very good
results which reproduce the strong dependence of ductility upon initial void shape (the more oblate the
initial void, the lower the ductility, as one could expect). These comparisons thus again evidence the im-
portance of incorporating void shape effects in predictive models of void coalescence, not only for low
triaxialities but even for moderate ones of order unity.
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Fig. 4. Same as Fig. 3, but for the simplified model considering only one (porous) layer prior to coalescence.

1.0}

0.8
0.6
0.4

0.2}

00 02 04 06 08 Eeq 12

Fig. 5. Same as Fig. 3a, but for the simplified model using the Gurson model instead of the GLD model in the porous layer.
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Fig. 6. Comparison of Sovik’s numerical results (—) with model predictions (- --): (a) normalized stress, and (b) porosity.

Appendix A.

The aim of this appendix is to discuss the difference between these expressions of the parameter 4y given
by Eq. (19) and those proposed by Gologanu et al. (1997).

In view of the definition (1) of the void shape parameter S, there are two possible expressions for its time-
derivative. The first one, which immediately derives from the definition, is

=4 _ b (A1)

This expression of S can be termed “pointwise”, since it relates S to the motion of certain special points on
the void surface. However, there is another, alternate expression of S, namely
§S=pY —pv

xx )

(A2)

where D) denotes the overall strain rate of the void, which is defined as an integral over the void surface
involving the velocity field. This is an expression “in mean value” of S.

Of course, Egs. (A.1) and (A.2) are equivalent if the void remains spheroidal during the mechanical
history. Unfortunately, numerical simulations detailed in Gologanu’s (1997) thesis show that such is only
approximately the case in reality and that Egs. (A.1) and (A.2) are in fact not equivalent. These numerical
simulations lead to the following heuristic expressions of /4;:

[1-T1 if (Z.—2)trZ>0,
hr = { 1-72/2 if (Z.-Z)tr <0 (A3)
for the pointwise definition (A.1) of § and
b — 1—(T*+T1%/9 if (Z.—-Z)tr £>0, (A4)
71— (24 TH/18  if (2. — S )tr £ <0 '

for the definition (A.2) in mean value.

In the work of Gologanu et al. (1997), the definition (A.2) in mean value and the associated expressions
(A.4) were adopted. The motivation for this choice was that these formulae account better for the mean
deformation of the void. However, in FE micromechanical simulations of the type presented in Section 4, it
is customary to deduce the evolution of the shape parameter from that of the axes of the void. We therefore
adopt this convention here, which leads us to prefer formulae (A.1) and (A.3).
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